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Abstract 

We present a new approach for inference from accelerated life tests. 

Our approach is based on a dynamic general linear model setup which arises 

naturally from the accelerated life testing problem and uses linear Bayesian 

methods for inference.    The advantage of the procedure is that it does not 

require large number of items to be tested and that it can deal with both 

censored and uncensored data.   Furthermore, the approach produces closed 

form inference results.   We illustrate the use of our approach with some 

actual accelerated life test data. 
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1.   INTRODUCTION AND OVERVIEW 

In reliability studies it is a common practice to subject items to an 

environment which is more severe than the normal operating enviroment so 

that failures can be induced in a short amount of test time.   A more severe 

environment can be created by increasing one or more of the stress levels, 

which constitute the environment, to values which are greater than their 

usual levels.   Such tests are called accelerated life tests.   The main problem 

with inference from accelerated life tests is that uncertainty statements 

about the failure behavior of the items at usual stress conditions have to be 

made using life length data from the more severe stress conditions.   Most of 

the current literature on the accelerated life testing problem is based on the 

sample theoretic paradigm [see Meeker and Hahn (1985) for an up-to-date 

review] ; exceptions to these are Meinhold and Singpurwalla (1984) and 

Blackwell and Singpurwalla (1986) which involve a Kaiman Filter formulation 

of the accelerated life testing problem. 

In this paper we present a new procedure for inference from 

accelerated life tests.   Our procedure is Bayesian and is based on a dynamic 

general linear model (DGLM) setup [see West, Harrison and Migon (1985), 

henceforth WHM] which arises naturally from the accelerated life testing 

scenario.   Our procedure uses the linear Bayesian approach of WHM and 

produces closed form solutions for inference.   The main advantage of the 

procedure is that it does not require large number of items to be tested at 

each stress level and that it can deal with both censored and uncensored 

data.   Besides, the recursive nature of the results produced by the 

procedure facilitates its use on Personal Computers. 



In our setup we assume that lifetimes obtained under all stress levels 

have an exponential distribution and make use of a particular time 

transformation function.   The extension of our approach to other failure 

distributions such as the Weibull distribution is being investigated.   The 

extension of the procedure to other time transformation functions is straight 

forward. 

A synopsis of our paper is as follows: 

In Section 2 we present the notation and preliminaries for the 

accelerated life testing problem.   In Section 3 we introduce the power law as 

a time transformation function and present the DGLM setup for the problem. 

We also discuss the adoption of our procedure to other time transformation 

functions.   In Section 4 we describe the inference procedure for the DGLM 

setup.   Finally in Section 5, we illustrate the use of our approach by 

applying it to some actual accelerated life testing data published by 

Nelson (1972). 

2.   NOTATION AND PRELIMINARIES 

Assume that testing is done in stages using k accelerated stress 

levels of decreasing intensity which are specified in advance and may or may 

not be equally spaced.   During the i-th stage of testing, items are tested 

under an accelerated stress level denoted by S,.   Using the notation S< < S^ 

to denote that S., is a more severe testing environment than St, we note that 

Sj > S2 > •■- > S,,  > Sk+1 , 

where   Sk+1   denotes the use stress at which no testing is done. 

(2.1) 



At each stress level S„ n, items are tested for a predetermined and 

fixed time length T,.   Let Y„ denote the time to failure of the j-th item 

tested under stress level S„ and yi} denote the realization of Y,,, 

for j= 1, 2, ... , r, < n< where r» denotes the number of failures observed 

during the time interval (0, TJ. 

We assume that the failure rate function for items tested under 

stress S, is constant and denoted by X,.   Thus, given \, the failure 

distribution under stress S, is described by the exponential density 

p(yt|A<) «M-^*. (2.2) 

Furthermore, given K, failure times for items tested under stress S, are 

judged to be independent. 

Given the r,*s and yt/s, our goal is to make inferences about the 

failure behavior of an item operating at use stress (normal) conditions Sk+1. 

In so doing, it is most common to assume a functional relationship between 

the failure rate and the applied stress level.   Such relationship is known as 

an acceleration or time transformation function.   Commonly used models for 

describing such relationship are the Arrhenius Law, the Eyrlng Law, and the 

Power law; see for example Mann, Schäfer and Singpurwalla (1974), p.   421. 

In what follows, we will focus attention on the popular Power Law and present 

the DGLM setup for the accelerated life testing problem.   In general, the use 

of any of these laws should be based on the physics of failure for the 

problem at hand. 



3.   THE DGLM SETUP FOR ACCELERATED LIFE TESTING 

Under the Power Law, we write 

X,  = aiS/' , O.I) 

where a and ß are unknown coefficients which describe the stress effect on 

failure rate.   The subscripts associated with a and ß imply the fact that the 

time transformation function might be changing from one stress level to 

another.   As noted by Blackwell and Singpurwalla (1986) this is likely to 

happen due to the changes in the basic failure mechanism with changes in the 

stress level. 

We can linearize (3.1) by taking natural logarithms on both sides and 

write 

77, = log a, + ßt logS, , (3-2) 

where 77, = log\4 .   We define 6/= (loga,     0,) , Ft'= (1   logSs) and write 

(3.2) as 

£«' li • (3.3) 

We note that (3.3) provides us with a guide relationship in the sense of WHM 

and that £, is the underlying state vector. 

Next we describe how the time transformation function is changing 

from one stress level to another by specifying the system (evolution) 



equation of the model as 

0,  = e,_,  +wM (3.4) 

where wf is a random innovation term.   We note that in (3.4) the state vector 

6 i's are assumed to be constant from one stress level to another, except for 

the random changes brought about by the innovations w..   The distribution 

of w, is only partially specified through its first and second order moments. 

We use the notation, 

»i ~ I 0  , W, ] , (3.5) 

to denote the fact that ;wt has mean vector 0 and variance-covariance matrix 

Wj.   Typically, w{ is independent of _©,_!• 

Let D, denote all the relevant information available at stage i after 

observing r, and failure times {ytJ}       at stress level S4; D0 represents all 

relevant information available at stage 0 prior to any testing.    At stage (i-1), 

we assume that the distribution of the state vector 0^_j is partially 

described by the first and second order moments as 

(IMIDM ) ~ (£«-. .£,_, ] . (3.6) 

Using the system equation and (3.6) we can write 

(»«ID,,, ) ~ [ mt_x , R, ], (3-7) 



where Rj = C,_, + W, .   Equation (3.7) provides us with a partial 

description of the prior distribution of the state vector £, before testing at 

stress level S,.   It is important to note that the innovation term w, provides 

an increase in uncertainty (represented by the addition of W«) over the 

stress levels as £,_! changes to £,.   This loss of information about £, 

motivates the discount concept   [see for example, Smith (1979) and Ameen and 

Harrison(1985)] used by WHM as a guide for the choice of W,.   The 

underlying idea is that the increase in uncertainty over the next stress level 

should be relative to that available at the present stress level, measured by 

Cf_j.   The details associated with the choice of the discount factor are 

described by WHM.   In our case, the discount factor can be chosen as 

function of fo/S,^) to take into account the relative magnitudes of the 

stresses. 

From the guide relationship (3.3) we can write 

f< = Elr?,|Di_.il =£/£<_! , 

(3.8) 

Qi _= Varf^lD,^] = £/£,£, . 

We note that (3.8) provides us with only the first two moments of the prior 

distribution of ifc at stage (i-1).   We can specify a full distributional form for 

the prior of Vi and use the relationships given by (3.8) to determine the 

parameters of the distribution.   In order to obtain closed form solutions in 

the Bayesian analysis, we will specify a conjugate form for the prior of T]i 



which is a loggamtna density of the form 

pCr/.ID,.,)  <* "p{ a^t- b'eT7' >' (3-9) 

where a, and b, are the prior parameters.   We denote the density in (3.9) by 

£Q(a, ,b4).   From (3.9) we may obtain 

E[rMD,_il = *(at) - log(bt), 

and 

Varf^ilD,.,! = »'(a,), 

where *( •) and *'( -) are the dlgamma and trlgamma functions respectively. 

We will specify the prior parameters a{ and b, such that the first two 

moments of T)t agree with (3.8), that is, 

*(ai) - log(bt) = r„ 

(3.10) 

♦'(a«) = q,. 

In solving (3.10) for at and bt some approximations to *( •) and *'(   ) can be 

used [see for example, Cox and Lewis (1966), Ch. 2].   We note that specifying 

the prior distribution of Vt as Atfat.b,) implies that the prior of X, at stage 

(i-1) is a gamma density with shape parameter a< and scale parameter bt.   We 

will denote this density as QCa^bj). 



To summarize, the DGLM setup for the accelerated life testing 

problem is as follows: 

/   iv >     v -xi y» 
p(y( \K> = xte » 

(T7f |Df_!) ~ I«aitbj);   Vt = log(X,), (3.11) 

(ejD^j) ~ [ £,., , R, ), 

where a( and b, are chosen according to the guide relationship T)t = F/ 0^ so 

that E[r7, |D,_X] = f{ and Var[r/t | Df_il = q4. 

We note that the DGLM setup for the accelerated life testing problem 

can be easily modified for other time transformation functions.    For example, 

under the Arrhenius Law 

X, = exp{af-^/S1) , (3.12) 

which implies that the guidance relationship T]t = log(X<) is given by 

equation (3.3) with 0/= (a,   0,) and    F4'= (1  -1 /S4).   Now the DGLM setup 

of (3.11) can be applied to the problem.   Extension to the Eyring and other 

laws follows along the same lines. 

4. INFERENCE RESULTS FOR DGLM SETUP 

Given D„ the available information after the l-th stage of testing, we 

need to update our inferences about 77, and £}. The posterior distribution of 

7]t given Dj is obtained via the standard use of Bayes' theorem 

pWJD,) CC Ur]i;Dt) P(r?i|D4_1), 



where X.C7,;D,) is the likelihood function for rjt given by 

I(r7t;Dt)  = exp{77,r,  - T.e7?'}, (4-D 

and T,  =   2 y,., + (n, — r,)r, is the total time on test at stress level S,.   It 

can be shown that 

(77, | DJ ~ X^+r^+T,), (4.2) 

implying that (A, |D,) ~ Q(a,+r,,b,+T,).   The posterior mean and variance of 

77, are given by 

g, - E[T7,|D,] = *(a,+r,) - log(b,+T,), 

(4.3) 

p, = Var(77,|D,] = *'(a,+rt). 

The next step is to obtain the posterior mean and variance of the 

state vector £,.   We note that the full form of the posterior distribution for 

(6, |D,) is not available since the prior of (9, |D,_i) is only partially specified. 

Recognizing the fact that, given 77„ the observation model (2.2) does not 

depend on £„ WHM developed a method for updating the first two moments 

of (6, |D,) using the linear Bayesian approach of Hartigan (1969).   The details 

of the method is omitted here and only the main result is presented. 



The method described by WHM leads to the updating of the state 

vector as 

(0,|Df) ~ [m, ,C,L (4.4) 

where 

m{ = mt_! + s^)(g(— ft)/q«. 

(4.5) 

£t = -E.«  — JL«iL*\      q~|       1 ' 

with s, = jR4 F,.   We note that the updating equations for 0^ in the DGLM 

setup have the same form as the well-known Kaiman filter recursions [see for 

example Meinhold and Singpurwalla (1983)]. 

After performing the test at the last stress level Sk, our aim is to 

make inference about the life length of an item at use stress conditions Sk+1. 

In other words, given Dk we wish to make uncertainty statements about Yk+1 

and Xk+1 (or equivalently about TJk+l).   Given Dk we have 

(TfcID*) ~ X-S(ak+rk,bk+T)t), 

and 

(£k|Dk ) ~[ mk , Ck ]. 

We describe our uncertainty about the state vector £fc+j using the system 

equation; that is, 

(0*+ilDk) ~ [j&t . R*+i I (4-6) 

where Rk+l = Cfc + Wfe+1.   From the guide relationship of (3.3), we obtain 

10 



f*+i = F'k+1 mk   and   qk+1 = F'k+I Rk+1 Fk+1 .   Using the DGLM setup of 

(3.11), we describe uncertainty about r/k+1 via the density 

Wfc+ilD*) ~ X-5lak+1 , bk+1], (4.7) 

where ak+J and   bk+1 are chosen such that *(ak+1) — logf^.^) = fk+i 

and *'(ak+1) = qk+1.   Thus, inference about the use stress failure rate is 

made by using the probability density   (X,k+ilDk) ~ Q(ak+i, bk+1]. 

Inference about the life length of an item operating at use stress 

conditions is obtained using the predictive density 

oo 

p(yk+ilDk) =    p(y*+iixk+i) p(xt+1|Dk)  dxk+1 

0 (4.8) 

/>,        >ak+l 
        °k+npfc+iv  

~(bk+1+yk+/
k+1+1' 

which is a Pareto density with reliability function 

R(yk+1|Dk) = ihx+l)**+\k+1 ■ (4-9) 

(bk+i+ yk+i) 

A nice feature of the DGLM setup is that, at any stress level St, we 

can make inference about the failure behavior at any stress S^ < S4 ( that is, 

i  <    j )   and at the use stress.   Assume that we have tested items at stress 

level St and we have (£-1) stages of testing ahead, that is, £ = k—i + 1.   We 

11 



define 

m,(£) = E( 6     -ID,], 

and 

£,(£) = Var[£l+£|D,], 

where m,(0) = m, and 0,(0) = Cf.   Using the system equation of the DGLM 

setup we obtain 

fif(£) = m, , for £ ^ 0 , 

C,(£) = C,(£-l) + W+£    for £ > 0. 

Similarly, using the guide relationship we write 

f,(£) = E[ r/t+£|Dt ] = F'i+£ fi,(£), 

(4.10) 

(4. 11) 

qt(£) = Var{ r?£+£ | D, ] = F'£+£ C,(£) Fj+£. 

Thus, we can use (4.10) and (4.11) in the DGLM setup and make 

inference about the failure rate at stress levels S_, < S{ given Dt. 

5.   EXAMPLE 

The method was applied to some accelerated life test data taken from 

Nelson (1972).   This data, given in Table 5.1, represents the times to 

breakdown of an insulating fluid with subjected to various voltage levels. 

The insulating fluid   is tested at accelerated stress levels 26, 28, 30, 32, 34, 

12 



36, and 38 Kv, and inference is to be made concerning the breakdown times 

for the the insulating fluid at 20 Kv (use stress).   In our approach we assume 

that testing was done in a sequential manner from highest to lowest stress 

level. 

TABLE 5.1 

Times to Breakdown of an Insulating Fluid (in Minutes) 
Under Various Values of the Stress 

38Kv 

.09 

.39 

.47 

.73 

.74 
1.13 
1.40 
2.38 

36Kv 

.35 

.59 

.96 

.99 
1.69 
1.97 
2.07 
2.59 
2.71 
2.90 
3.67 
3.99 
5.35 

13.77 
25.50 

34Kv 

.19 

.78 

.96 
1.31 
2.78 
3.16 
4.15 
4.67 
4.85 
6.50 
735 
8.01 
8.27 

12.06 
31.75 
32.52 
33.91 
36.71 
72.89 

32Kv 

.27 

.40 

.69 

.79 
2.75 
3.91 
9.88 

13.95 
15.93 
27.80 
53.24 
82.85 
89.29 

100.58 
215.10 

30Kv 

7.74 
17.05 
20.46 
21.02 
22.66 
43.40 
4730 

139.07 
141.12 
175.88 
194.90 

28Kv 

6835 
108.29 
110.59 
426.07 

1067.60 

26Kv 

5.79 
1579.52 
2323.70 

Due to our unfamiliarity with the problem at hand, the selection of the prior 

parameter values is made for illustrative purposes only.   We use the Power Law as 

our time transformation function and specify our prior parameter values as 

m* T -15.0     10.01 C0 

0.5 

0.0 

0.0 

0.5 

13 



and 

W, = 
0.01       0.0 

0.0       0.01 

for all stages i. 

Plots of the posterior means of Logaj and ßu (which are the components of mj 

for each stage of testing are presented in Figures 5.1 and 5.2 respectively.   Note 

that there is an overall downward trend in both graphs and that after a strong 

decline from the prior mean values, a more stable behavior is exhibited.   Thus 

-14,»- 

II 
E 
A 
N 

i 
I 
I 

TESTING STAGE 
Fig. 5.1       Posterior Means of loga{ 

implying that our prior belief about the effect of stress on failure behavior of the 

units was stronger than that exhibited by the data. 

In Table 5.2 we present the E[\j\ D4] , j - i, i+1, ... , k, k + 1   for each testing 

stage i.   Columns of this table exhibit our assessment of the failure behavior of the 

system (insulating fluid) under the different levels of stress based on the total 

14 
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amount of information available after each stage of testing.   In Figure 5.3 we plot the 

last row of this table to illustrate the evolution of the failure rate predictions for 

use stress.   In addition, in Figure 5.4 we illustrate the predictive reliability functions 

for use stress after testing stages 1, 3, 5,and 7. 

TABLE 5.2 

Failure Rate Predictions at Different Testing Stages 

TESTING STAGE 
PREDICTION 
FOR STAGE 1 2 3 4 5 6 7 

1 1.1102 
2 0.8155 0.2546 
3 0.6288 0.1944 0.0810 
4 0.4773 0.1503 0.0622 0.0293 
5 0.3559 0.1142 0.0480 0.0234 0.0154 
6 0.2601 0.0852 0.0363 0.0171 0.0115 0.0047 
7 0.1857 0.0622 0.0270 0.0129 0.0087 0.0034 0.0015 

8 (use 
stress) 

0.0563 0.0204 0.0094 0.0047 0.0033 0.0014 0.0006 

15 
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Fig.   5.3     Failure Rate Predictions for Use Stress 
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Fig.   5.4     Predicitive Reliability Function for Use Stress 
at Testing Stages i  = 1, 3, 5, and 7 
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